
joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-020734

Meeting #19, Montreal, CANADA, 8 – 12 July 2002

Source:
Telecom Italia Lab (Corrado MOISO, Sergio TOGNON)
Title:
Framework Information Model: a first analysis

Agenda Item:
Framework

Document for:
Discussion
Category:

Work Item ID:

OSA3 (3GPP Rel-6)

Doc Summary:

Specs involved:
ETSI ES 201 915-3, 3GPP TS 29.198-3

This is the version of N5-020591, revised in order to be inserted as an Annex of the Framework document.

Table of contents

21
Annex – Information Model issues

21.1
FIM scope

31.2
Adopted approach

31.3
Initial FIM

31.3.1
Service Entities

41.3.2
Service Properties

51.3.3
Service Subscription

71.3.4
Service Discovery

71.3.5
Service Registration

81.4
Open issues

Annex – Information Model issues

This Annex analyzes aspects concerning the information model underlying the framework functions and APIs and to identify some open issues to be further investigated. An initial FIM is defined, to be further enhanced both by incrementing the level of detail and by considering additional framework functions.

The Framework Information Model (FIM) does not have a normative purpose to constrain framework implementations, by defining a mandatory implementation of the data needed to implement the its functions.

The FIM aim is to define logical or functional entities and their relationships, in order to (1) better understand the behavior of the framework interfaces and their operations and to (2) improve the definition of the framework.

FIM would play the same role of state diagram defined for the SCFs.

The Framework Information Model has to be carefully structured, and defined at a proper detail level: not so deep to impose implementation constraints and not so abstract to hide aspects (namely entities, relationships, objects or other) that are needed to achieve the aforesaid objectives. Parts of a FIM are already, implicitly, defined in the specification of framework APIs, such as those concerning service subscription, service registration, and service properties.

The following are two examples of the advantages of a FIM.

· Service Registration

Before a service can be accessed and used, it has to be registered in the framework, where information on the available services is contained. The registration procedure is described in the specifications, as well as some relationships among the involved entities (namely Service Supplier Administrator, Framework, the Service that has to be registered); moreover some of the involved objects can be deduced from the interface definition, but a clear, high level view of the whole procedure is not available. Part of this issue can be covered by FIM.

· Service Subscription

The Service Subscription phase is described by the specification in some detail, but it is not simple to deduce all the relationships among the various involved entities (e.g. the Enterprise Operator, the Framework and the Client Application, that have precise roles in the Service Subscription phase), or to have a clear vision, as an example, of all the SAG (Subscription Assignment Group) aspects. A more formal and detailed representation, including the relationship with analogous entities (e.g., Service Properties), could improve the specification.

1.1 FIM scope

The Framework Information Model must cover several framework functions and also some possible extensions, including:

· Service Subscription and subscription management: each involved entity must be precisely defined, together with the configuration data related to application subscription; possible aspects related SLA constraints to applications subscription should be addressed as well.

· Services and service interfaces registration and configuration.

· Service discovery.

· Usage data management (e.g. logging data and relationships towards subscribers and Service Interfaces).

In addition the FIM must identify and clarify the relationships among entities handled by the different interfaces. In particular the FIM must consider the entities concerning the description of services and the definition of the service properties, as most of the framework interfaces works on them.

1.2 Adopted approach

The initial FIM was obtained by means of the following steps:

· Define those objects that can be used to describe framework behavior (starting from framework interfaces definitions).
· Define their “inter-working modalities” (i.e. relationships).

· Define, when possible/useful, the related Data Structures.

· Describe formally objects and relationships using UML (when possible/useful; e.g. via class diagrams).

1.3 Initial FIM

The initial FIM is defined in terms of set of UML Class Diagrams describing objects and relationships, together with a textual description of the objects and their attributes.

At the moment, the analysis covered the following framework aspects:

· Service Entity

· Service Property

· Service Subscription

· Service Discovery

· Service Registration

1.3.1 Service Entities

One of the most relevant class diagrams in FIM describes the Service entity taxonomy. It is important to define these objects since the framework treats them in several phases of Service lifecycle (e.g. when a Service is made available by a Registration, when an application attempts to find a Service having particular characteristics by a Discovery, when SLAs are defined).

In the proposed diagram the two fundamental relationships is-a and has-a are used to describe the classification.

One of the relevant aspects to be noted is that a Service Type has a ServiceTypeServiceProperties, and this is composed of StandardServiceProperties and ProprietaryServiceProperties (that can be absent); this means that a Service can have also ProprietaryServiceProperties, concerning non-standard feature (e.g. access to particular resource capabilities allowed by proprietary protocols). This characteristic allows Service Suppliers to differentiate their offer from competitors.

[image: image1.wmf]value can be

a data or a policy

ServiceProperty

name

type

mode

value

ProprietaryServiceProperties

1..*

1..*

StandardServiceProperties

1..*

1..*

ServiceTypeServiceProperties

0..*

0..*

1..*

1..*

ServiceType

serviceTypeName

ServiceProperties

Service

serviceID

ServiceSubscriptionProperties

ServiceContract

serviceContractID

serviceRequestor

billingContact

serviceStartDate

serviceEndDate

serviceTypeName

serviceID

(from Subscription)

ServiceProfileServiceProperies

ServiceProfile

serviceProfileID

1..*

1..*

Figure 1: Service Entities Class Diagram

1.3.2 Service Properties

An aspect closely tied to service entities is the definition of the properties characterizing services.

The Service properties set should allow defining various aspects of a Parlay service. Since it has several groups of characteristics (e.g. “static” and “dynamic” aspects), different kind of properties can be identified. A classification of the possible service properties can be helpful in various contexts, such as standards, Service Level Agreements, gateways implementation and other.

The properties classification should take into account the following items:

· Service properties “scope”. Some properties are global, i.e. valid at any level e.g. the Service Type Name, other are “implementation specific” in the sense that they are meaningful only if related to a service implementation, like the network protocol used by a vendor supplying Parlay Services (e.g. a Parlay CC Service for INAP).

· Service Properties typology. Different kind of Service Properties can be identified, namely Service Properties for interface implementation profiling, and Service Properties to restrict service use (e.g. to define SLA constraints): their relationships with the other entities (e.g., subscribers, service type) have different meaning. At the moment this distinction is not yet considered.

· “Lifetime” of service properties. Some property starts being significant only in particular moments of services lifecycle; for instance some property set is meaningful at “service subscription” time (e.g. the maximum number of allowed leg for a client application). This aspect is linked to SLA matters (i.e. use of service properties to make effective SLA conditions).

The following picture shows an example of service properties classification, represented as an UML Object Diagram, based on the class diagram of Figure 1. A simple Parlay Multiparty Call Control Service (MPCCS) is described, together with some its typical service properties.

Concerning the service properties scope, it can be noticed that the “Service Type Name” is global, whereas the network protocol is meaningful at a Service level; and in that point, a range value (1..10) is significant for the number of the legs involved in a call. Going down to properties related to different MPCCS Instances, that are tied to different client applications and whose characteristics are defined in the subscription phase, it can be seen that the leg number property is (or it can be) restricted to a particular value.

It can also be observed that the meaning of the Leg Number service property changes: at MPCCS Service level it means that this particular MPCCS can support services managing up to ten legs (and obviously the lower network has to be able to manage ten leg calls or more), whereas the same property related to Instance A means that client application A uses up to 2 legs, i.e. its SLA includes such a condition).

[image: image2.wmf]MPCCS :

ServiceType

MPCCS SP :

ServiceTypeServiceProperties

MPCCS :

Service

protocol = INAP :

ServiceProperty

MPCCS

instance A

Leg Number = 1..10 :

ServiceProperty

protocol =

INAP

Leg Number =

2

MPCCS

instance A SP

MPCCS

instance B

MPCCS

instance B SP

protocol =

INAP

Leg Number =

5

ServiceTypeName = "MultiParty Call

Control Service" : ServiceProperty

MPCCS SP :

ServiceProperties

MPCCS vendor's

implementation

Figure 2: Simple example of Service Properties classification (Object Diagram)

1.3.3 Service Subscription

This component is very important and quite complex, due, among other things, to the number of involved entities; a formal description in this case can be particularly helpful.

The relationships Signs Contract, Uses Service, Authorizes, among EnterpriseOperator, ParlayFramework and ClientApplication, together with considerations on the modeling of this phase, have been deduced (besides the interfaces definition) from the description of the service subscription.

The manages relationship (cyan arrows) indicates the objects the EnterpriseOperator deals with.

[image: image3.wmf]Subscription

Assignment

Group

EntOPAccount

entOPAccountID

SAGMember

ServiceContract

serviceContractID

serviceRequestor

billingContact

serviceStartDate

serviceEndDate

serviceTypeName

serviceID

ServiceProfileServiceProperies

(from Parlay entities)

SAG

SAG ID

1..*

1..*

ParlayFramework

(from Parlay Framework)

EnterpriseOperator

entOpID

enterpriseOperatorProperties

(from Parlay entities)

Signs Contract

manages

ServiceProfile

serviceProfileID

(from Parlay entities)

1..*

1..*

1..*

1..*

ClientApplication

clientAppID

clientApplicationProperties

(from Parlay entities)

1..*

1..*

Authorizes

Uses Service

1

1

Figure 3: Subscription phase Class Diagram

The is-a and has-a relationships allow having an immediate representation of the SAG (Subscription Assignment Group) structure: a SAG is a set of Client Applications having assigned the same set of service features. Each Client Application is part of at least one SAG, which can contain one or more Client Applications. Moreover, the EnterpriseOperator manages service contracts and service profiles, which have the following functions:

· The enterprise operator subscribes to a number of services by creating a service contract with the Parlay Framework for each service. Each service subscription is described by a service contract, which defines the conditions for the service provision.

· A service contract restricts the usage of a service at subscription time. A service contract contains one or more Service Profiles, one for each client application or SAG in the enterprise operator domain.

· A Service Profile contains the service parameters, which further restrict the corresponding parameters in the service contract in order to adapt the service to the client application’s needs. A service profile is a restriction of the service contract in order to provide restricted service features to a client application or a SAG. It is identified by a unique ID in the enterprise operator domain and contains a set of service properties, which defines the restricted usage of service allowed for that client application or SAG.

1.3.4 Service Discovery

Through this framework interface the client application try to find a Service having the required parameters. This is represented via the uses interfaces relationship between ClientApplication and ParlayFramework, the makes available relationship between ParlayFramework and ServiceType, and the discovers relationship, that binds ClientApplication and Service.

[image: image4.wmf]e.g.: Call

Control

i.e. SCF;

e.g.: a particular

vendor's CC,

h.323 CC...

Client Application

looks for the

Service(s) compliant

to its needs.

ServiceType

serviceTypeName

(from Parlay entities)

ParlayFramework

(from Parlay Framework)

makes available

Service

serviceID

(from Parlay entities)

ClientApplication

clientAppID

clientApplicationProperties

(from Parlay entities)

uses interfaces

0..*

0..*

discovers

Figure 4: Service Discovery phase Class Diagram

1.3.5 Service Registration

Through this framework interface the Service Supplier executes a set of steps to make available new services to client applications. The uses interfaces relationship between ServiceSupplier and ParlayFramework and the supports relationship between ParlayFramework and ServiceType are self-explaining; the discovers* relationship between ServiceSupplier and ServiceType is related to the search phase of the service types supported by the framework, and the registers relationship links the ServiceSupplier to the Service to make available. The Service is equipped with a ServiceFactory: this is represented by the has-a relationship.

[image: image5.wmf]e.g.: GCCS (Call

Control Interfaces)

i.e. Interface

implementation

(Gateway side);

e.g.: a particular

vendor's CC,

h.323 CC...

Service Supplier looks

for the Service(s)

supported by the

Framework.

Dinamic objects

creation/deallocation

function (i.e. the service

managers whose

references are given to

the Client Applications)

ParlayFramework

(from Parlay Framework)

ServiceType

serviceTypeName

(from Parlay entities)

supports

ServiceSupplier

(from Parlay entities)

uses interfaces

0..*

0..*

discovers*

Service

serviceID

(from Parlay entities)

0..*

0..*

registers

ServiceFactory

(from Parlay entities)

Figure 5: Service Registration phase Class Diagram

1.4 Open issues

In the process to produce the initial FIM some open issues were identified, whose investigation would improve the definition of the Framework. They include:

· Relationships among objects handled by different interfaces. The FIM highlighted that there are situations in which different interfaces can acts on the same entity or on linked entities, but currently each interface is defined independently: this can hide possible links to entities not directly handled by that interface, or even possible side-effects.

· Service Contracts. The detail of the relationships between Service Contract and the other service-related entities (e.g. Service, ServiceProfile, ServiceSubscriptionProperties etc.) need further analysis, also to understand their role in the definition of SLA clauses.

· Service Properties typology. The classification of service properties should be further investigated, in order to address the issues identified in Section 1.3.1.

· Service Properties in Service Discovery. The selection of service interfaces performed by Service Discovery should be influenced by the service properties and the subscription data.

[image: image6.wmf]TELECOM

LAB

ITALIA

[image: image7.wmf]TELECOM

LAB

ITALIA

_1045990285.doc

TELECOM

LAB

ITALIA

